
Automatic Composition and Selection of

Semantic Web Services

Tor Arne Kvaløy1,2, Erik Rongen1, Alfredo Tirado-Ramos2, and Peter Sloot2

1 IBM Center for Advanced Studies,
David Ricardostraat 2-4, 1066 JS Amsterdam, The Netherlands,

torarnek@pvv.org, erik@nl.ibm.com,
2 Faculty of Sciences, Section Computational Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands,
{alfredo,sloot}@science.uva.nl

Abstract. Interactive applications like Problem Solving Environments
require on demand access to Web Services, where the services are au-
tonomously discovered, composed, selected and invocated based on a
description of requested capabilities. Semantic Web Services aim at pro-
viding semantically interpretable capabilities through the use of shared
ontologies. We demonstrate how Grid Services for an interactive biomed-
ical application are annotated with a domain ontology, and propose al-
gorithms for automated composition and selection of workflows, where
workflows are created by semantically matching service capabilities, and
where workflow selection is based on a trade-off between the types of
semantic matches in the workflow and the number of services. The algo-
rithms are demonstrated on semantically annotated Grid Services in the
biomedical application.

1 Introduction

Web Services are self-describing, self-contained units of application logic that
are either used as a single service or composed into a workflow that is executed
sequentially as a whole. Creation of such workflows has traditionally been ac-
complished by manually locating suitable services via a registry like UDDI and
then composing them into a workflow. With the increase of available services
and the dynamic nature of the Web it is desirable to automate these processes
by having software agents discover, compose, select and execute workflows au-
tonomously [1].

XML Schema based standards for describing Web Services (WSDL and SOAP)
guarantee only syntactical interoperability between services in a workflow, while
what is needed for automating the mentioned processes is interoperability on
a semantic level. The Semantic Web provides standards for representing and
reasoning with computer interpretable information [2], and this has lead to the
development of OWL-S, which is an attempt to standardize how Web Services
are described semantically, thus creating Semantic Web Services [3].



OWL-S provides a semantic layer on top of WSDL that maps operation
parameters to semantics defined in ontologies. Grid Services are with OGSI [4]
and WS-Resources [5] based on Web Services in that the interfaces are defined
with WSDL. OWL-S does neither reflect nor interfere with the standardized
interfaces for statefulness, so we maintain that OWL-S can be used to describe
the application specific interfaces of Grid Services. Semantic Grid Services are
therefore in our view Grid Services with semantically annotated capabilities,
where OWL-S is an example of a standard that specifies the semantic layer. In
this work we will focus on the interfaces of the services and not their statefulness.

It is anticipated that in the future, Grid Services will have associated econom-
ical costs with various degrees of quality and performance that can be used for
composition and preferred selection of services. Before this higher level informa-
tion is taken into account, it is important to achieve composition and workflow
selection on a fundamental level, where the focus is on the information and state
transformation of the services. In this work we represent services by the informa-
tion transformation they undertake, in the form of input and output parameters
which are described by semantics defined in ontologies.

To relieve the user from the unnecessary complexity of specifying exactly
which services to use, a semantic description of the information transformation
that is needed could be specified in the form of requested capabilities. Based
on these requested capabilities a Matchmaker could on-the-fly find the best ser-
vices and compose them into a workflow. And since semantic interoperability
is guaranteed by the semantics, the workflow could be automatically integrated
into the client application, which is in our case a Problem Solving Environment
(PSE) [7].

We demonstrate in this paper the significance of Semantic Web Services
in a PSE and show how a domain ontology is developed to annotate services.
Furthermore, we demonstrate composition of services with a simple algorithm
and we propose a novel algorithm for automated workflow selection.

The rest of the paper is organized as follows. In Section 2 we give a detailed
description of the scenario of the interactive biomedical application. In Section
3 we introduce the architecture of the Matchmaker by describing its interac-
tion with services, clients and ontologies. In Section 4 we discuss semantics for
annotating Semantic Web Services, and in Section 5 we develop a domain on-
tology to annotate the Semantic Grid Services for the biomedical application.
Algorithms for automated composition and workflow selection are presented in
Sections 4 and 5, and in Section 8 we demonstrate the algorithms by composing
and selecting the biomedical services, and finally in Section 9 we conclude.

2 An Interactive Biomedical Application

Problems where blood arteries are weakened or cluttered are called vascular
disorders, and lead to reduced or blocked blood circulation, causing in many
cases stroke, and eventually death. Medical data acquired by e.g. Magnetic Res-
onance Angiography (MRA) may be used by specialists to detect these disorders,



and treatment consists of reconstructing defected arteries or adding bypasses so
that the blood flow can normalize. The best treatment is however not obvious.
Problem Solving Environments (PSE) are therefore developed to allow surgeons
conduct pretreatment planning in a virtual 3D environment [7]. The PSE com-
ponents and Grid Services for this case study are shown in figure 1. The surgeon

ArteryLBMGrid

Simulation ServiceModel Manipulation

Visualization ServicePolyDataRendering Display

Local Components Grid Services
Configuration

Fig. 1. Dataflow between local components and Grid Services in the PSE.

works with the Model Manipulation component by inserting or modifying a by-
pass around the defected part of the blood artery, and when finished submits the
data of the artery’s geometry (ArteryLBMGrid) to the Blood Flow Simulation
Service according to the also provided Configuration.

The Simulation Service produces a dataset (RawVisualizationData) that is
sent to a Visualization Service where it is converted into 3D polygons (PolyData),
which is then sent to the local rendering component where a visualization of
blood flow is displayed to the surgeon. This procedure is repeated until the
desired effects are obtained.

The user specifies in the PSE that an information transformation that takes
ArteryLBMGrid and Configuration as inputs, and that returns PolyData is
needed. This is communicated to the Matchmaker, which tries to find a sequence
of services that provides this transformation.

3 Matchmaker Architecture

Figure 2 shows the architecture for the Matchmaker, adapted from [1], depicting
the involved parties and their events of interaction. Ontologies are used to an-
notate capabilities of services that are advertised to the Matchmaker, and then
to annotate requested capabilities specified by the client, and based on these
requested capabilities the Matchmaker composes and selects the workflows that
satisfy the requirements. This involves retrieving the necessary ontologies from
the Web, and semantically matching the capabilities using an inference engine.
The Matchmaker returns then a proposed workflow of services to the client, that
is used to invoke the services.

The Matchmaker maintains the list of advertised services in a local database,
and by using the OWL-S API library from The University of Maryland, the ca-
pabilities, described by Profile and Process, are parsed for input and output



2: Requested

Requested
Capabilities

Client
PSE

1: Advertise
Capabilities

Ontologies

Composition and

Selection

Capabilities

4: Propose
Workflow

Matchmaker

3: Retrieve Information

ref. ref.

4: Service Invocation
ServiceService

CapabilitiesCapabilities

Fig. 2. Architecture with sequence of interaction(solid arrows) and references to on-
tologies(stippled arrows).

parameters consisting of URIs to ontologies on the Web. The reasoning engine
(Racer [12]) loads these ontologies and compares them for equivalence and sub-
sumption.

4 Semantic Data Structures

Input and output parameters of services are represented by semantics defined in
domain ontologies, where the ontologies describe the parameters by specifying
what information that has to be provided and communicated as part of the
parameter. Each parameter points to one concept (core concept) in the ontology,
that specifies the necessary information for the parameter, where the information
consists of concepts, properties and data values. This is achieved by defining
concepts and properties, and then relating the core concept to the concepts and
properties through axioms like equivalence and subsumption, specified in OWL
as equivalentClass and subclassOf [8], respectively.

Properties, either relating a two concepts or a concept to a data value, are
defined with restrictions like allValuesFrom and cardinality, respectively specify-
ing existential qualification of the range-concept and qualified exactly cardinality
for the property [8].

The ontologies define the structure that the information has to conform
to, and this differs significantly from structure verifications provided by XML
Schemas, because the interpretation of the information is based on an ontology
that allows complex relations and constraints. Thus, communication with such
structures becomes more flexible in that there might be more than one way of
satisfying the constraints.

To the best of our knowledge, there exists no adequate name for such semantic
structures, thus we coin the name Semantic Data Structure (SDS) to define a
group of concepts and relations that are required to satisfy the constraints of a
core concept.



A domain ontology may consists of several SDSs with equally many sub
concepts and data values. They can therefore grow large and become very com-
plex. Requested and advertised capabilities are annotated with core concepts,
and manually finding these concepts become thus tedious and difficult, and the
reusability of ontologies is lowered. Core concepts should therefore be distin-
guished from other concepts on a semantic level, so that e.g. computer based
design tools can be used to select and present core concepts to the user. We
propose therefore that core concepts should be subsumed by a certain concept
(say CoreConcept) defined in a standardized ontology for Semantic Web Services
like OWL-S, thus in this way improving the reusability of domain ontologies. It
is furthermore tempting to specify core concepts as inputs and outputs in the
domain ontology [9], but outputs for one service might be inputs for another
service so that would restrict reusability.

Usage of core concepts can be enforced by only allowing parameters refer to
concepts that are subsumed by CoreConcept. For OWL-S, this could be achieved
by specifying a range restriction for the property parameterType [3].

5 Domain Ontology

Figure 3 shows fragments of a domain ontology defined to annotate the Grid Ser-
vices in the biomedical application. The ontology is described with Description
Logics notation [11] because of its more compact form than OWL. ConfigLight
is a SDS defined as CoreConcept with a property Viscosity, where the data prop-
erty is restricted to Integer as range, and cardinality of one. ConfigFull is then
defined as equal to ConfigLight with ReynoldsNumber as data property. Config-
Full is a specialization of ConfigLight and thus derives property Viscosity and
concept CoreConcept. ConfigFull can thus be used in replacement of ConfigLight
because the former specifies stricter restrictions and includes more information
than the latter. PolyData and PolyDataExtra are defined with similar relation.

ConfigLight ≡ CoreConcept u ∀ Viscosity.Integeru ≡ 1Viscosity

ConfigFull ≡ ConfigLight u ∀ ReynoldsNumber.Integeru ≡ 1ReynoldsNumber

ArteryLBMGrid ≡ CoreConcept u ∀ LocatedAt.URIu ≡ 1LocatedAt

RawVisualizationData ≡ CoreConcept u ∀ LocatedAt.URIu ≡ 1LocatedAt

RawVisData ≡ RawVisualizationData

PolyData ≡ CoreConcept u ∀ LocatedAt.URIu ≡ 1LocatedAt

PolyDataExtra ≡ PolyData u ∀ NumberOfFrames.Integeru ≡ 1NumberOfFrames

Fig. 3. Fragments of a domain ontology.

To demonstrate mapping between concepts, possibly defined in different on-
tologies, we define RawVisData as equivalent to RawVisualizationData. These
core concepts can then be used interchangeable, because RawVisData inherits
the property LocatedAt from RawVisualizationData.



SDSs are defined with equivalence axioms and not subsumption. In this way
is it sufficient, and not only necessary, to satisfy the concepts and relations on
the right-hand side to be a valid member of the SDS. This makes semantic
matching more flexible in that different SDSs can refer to the same right-hand
side concepts and relations, and thus match as Exact.

6 Automated Composition

In our work, services are composed into workflows based on the information
transformation they undertake in the form of input and output parameters.
Outputs can either be condition or unconditional, but we are currently for sim-
plicity only considering the latter, thus in this way creating simple workflows
that are directly executable without the need for human intervention or ma-
chine reasoning during execution.

Service capabilities, requested or advertised, consist of input and output pa-
rameters that each refer to a core concept in an ontology. These capabilities are
semantically matched as described by Paolucci et al. [10], where valid matching
types of SDSs are Exact and PlugIn. Exact match means that the SDSs are inter-
changeable and equal, while PlugIn match means that an inverse subsumption
relationship between the SDSs exists, and which depend whether it applies to
input or output parameters. A PlugIn match for an advertised input parameter
means that the service requires less information as input then what is asked for
or is provided to the service, and for advertised output parameters it means that
the service provides more output than what is asked for. PlugIn matches are
therefore defined as weaker than Exact matches.

The overall match between two capabilities, either between requested and
advertised capabilities, or between capabilities of two succeeding services in a
workflow, is determined by the weakest match of the parameters.

Compositions are made by first finding all services with inputs that match
with requested inputs, and then in forward chaining fashion, adding services
with inputs that match with the outputs of the last service in the workflow.
This leads to graphs of workflows where each branch represents a workflow, and
composition continues until no more matches among the unused services can be
found (each branch holds its own list of unused services), or the outputs of the
last service in the workflow match with the requested outputs.

Forward chaining is equally good as backward chaining when conditional
outputs are not taken into account, but if they are to be considered then a
backward chaining, or goal driven approach, would have been preferred because
of the asymmetries introduced by the conditional outputs.

7 Automated Workflow Selection

Several workflows might satisfy the requested capabilities specified in the PSE
and the problem is then to autonomously select the most optimal one. We present
here an algorithm that evaluates and assigns a cost to each workflow so that



they can be compared and thus one workflow selected. Evaluations are based
on the types of semantic matches the workflows consist of and the following
observations:

– Workflows with as few services as possible are preferred, because services
might be located far from each other geographically and communication
latency can lower overall performance.

– Exact matches are in general preferred over PlugIn matches, because with
services that match as PlugIn there might be information produced that is
not used and this might affect the performance negatively.

– Inputs of the first service in the workflow that match as PlugIn with the
requested inputs might affect the quality of the outcome differently than
PlugIn matches elsewhere in the workflow and should therefore be consid-
ered separately. A PlugIn match of the first inputs is considered worse than
a PlugIn match in the middle or at the end. This is based on the assumption
that what the client requests as input is important and will influence the
execution of the workflow. As an example consider a request for a data con-
version from one format to another including a certain parameter specifying
the conversion. A workflow taking this parameter into account would most
likely bring about a conversion closer to what is requested than a workflow
not taking this parameter into account.

Equation 1 shows the function that calculates the cost for each workflow,
where the inputs and outputs of services are evaluated and given values based
on their type of semantic matches. The overall match of the inputs of the first
service in the workflow is evaluated and then added to the summation of the
matches of the outputs of all N services, where n denotes the service number.
Evaluating the input match of the first service separately enables us to specify
a matching value uniquely, and for succeeding services in the workflow only the
outputs need to be accounted, because an output match is equal to the input
match of the next service.

The workflow with the lowest cost is chosen, thus the selection is based on
the types of semantic matches and the number of services.

Costwf = Inputs1(match) +
∑N

n=1
Outputsn(match),

Inputs(match) =

{

1 if match = Exact;
2 if match = PlugIn.

Outputs(match) =

{

1 if match = Exact;
1.5 if match = PlugIn.

(1)

8 Demonstration

In the PSE it is specified that a composition is requested that takes ArteryLB-
MGrid and ConfigFull as inputs, and that produces PolyData as output. Five
different compositions that satisfy these requested capabilities are displayed



in figure 4. The workflows consist of two simulation services (FlowSim1 and
FlowSim2), two visualization services (Vis1 and Vis2) and one service that sim-
ulate and visualize (FlowSimVis).

Cost: 4.0

In: ArteryLBMGrid, ConfigFull
Out: RawVisualization

FlowSim1

Vis2

FlowSim2

FlowSimVis

Vis1

Vis2

In: RawVisData
Out: PolyData

In: RawVisualizationData
Out: PolyDataExtra

In: RawVisData
Out: PolyData

In: ArteryLBMGrid, ConfigLight
Out: PolyDataExtra

In: ArteryLBMGrid, ConfigLight
Out: RawVisualizationData

In: RawVisualizationData
Out: PolyDataExtra

Vis1
Cost: 3

Cost: 3.5

Cost: 4.5

Cost: 3.5

Fig. 4. Workflows with assigned costs.

The inputs of FlowSim1 match as Exact for the requested inputs, while the
inputs of FlowSim2 and FlowSimVis match as PlugIn because ConfigLight sub-
sumes ConfigFull (inverse subsumption match). All the matches between sim-
ulation and visualization services are Exact, because RawVisualizationData is
equal to RawVisData in the domain ontology. And the outputs of Vis1 match as
exact with the requested outputs, while outputs of Vis2 and FlowSimVis match
as PlugIn because PolyData subsumes PolyDataExtra.

The cost of each workflow is calculated with the algorithm in section 3, and
the workflow with cost 3 is selected. This workflow is preferred even over the
workflow consisting of only FlowSimVis because it brings about a more exact
semantic transformation of information.

9 Conclusions and Future Work

This paper identifies a class of applications where Semantic Web Services will
be indispensable, in that they enable automated discovery, composition and
selection of services for direct integration, without human involvement, into the
Problem Solving Environment.

We emphasize that each service input and output parameter refers to a con-
cept in a domain ontology that specifies the semantic description of the parame-
ter. Communicating the information of the parameter require that the concepts



and properties defined by this concept is satisfied. We describe this information
therefore as a Semantic Data Structure, because it differs from XML Schemas
in that interpretation is based on an ontology.

We argue that concepts representing service parameters must be distin-
guished on a semantic level by sub-classing a certain predefined concept. This
enables design tools, and possible agents, to better select the right concepts to
annotate requested capabilities, thus improving the reusability of domain on-
tologies. We propose an extension to OWL-S to enforce such a restriction.

We present an algorithm for automated workflow composition where services
are composed into workflows in forward-chaining fashion. The parameters are
semantically matched as either Exact or PlugIn, and the overall match between
services is determined by the weakest parameter match.

We propose an approach for selecting the best workflow from a set of alter-
natives, where the quality and cost of each workflow is estimated, based on the
types of semantic matches, and number of services, involved.

The algorithms are demonstrated within the context of a biomedical appli-
cation by composing and selecting Semantic Grid Services that are annotated
with a domain ontology.

Future works involves applying the framework to statefull Web Services such
as described in the Web Service Resource Framework [5].

References

1. Massimo Paolucci, Katia Sycara, and Takahiro Kawamura. Delivering Seman-
tic Web Services. In Proceedings of the Twelve’s World Wide Web Conference
(WWW2003), Budapest, Hungary, May 2003, pp 111- 118

2. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

3. Dean, M. (ed). OWL-S: Semantic Markup for Web Services. Version 1.0, 2004.
4. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C, Maguire

T., Sandholm, T., Snelling, D., and Vanderbilt, P. Open Grid Services Infrastruc-
ture (OGSI) Version 1.0.

5. I. Foster (ed.). Modeling Stateful Resources with Web Services v. 1.1. March 5,
2004.

6. Z. Zhao; G.D. van Albada; A. Tirado-Ramos; K.Z. Zajac and P.M.A. Sloot: ISS-
Studio: a prototype for a user-friendly tool for designing interactive experiments in
Problem Solving Environments, in P.M.A. Sloot; D. Abrahamson; A.V. Bogdanov;
J.J. Dongarra; A.Y. Zomaya and Y.E. Gorbachev, editors, Computational Science
- ICCS 2003, Melbourne, Australia and St. Petersburg, Russia, Proceedings Part
I, in series Lecture Notes in Computer Science, vol. 2657, pp. 679-688. Springer
Verlag, June 2003. ISBN 3-540-40194-6

7. P.M.A. Sloot; A. Tirado-Ramos; A.G. Hoekstra and M. Bubak. An Interactive
Grid Environment for Non-Invasive Vascular Reconstruction. 2nd Interna-tional
Workshop on Biomedical Computations on the Grid (BioGrid’04), in con-junction
with Fourth IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2004)

8. OWL Web Ontology Language. W3C Recommendation 10 February 2004.



9. Li, Lei and Horrocks, Ian. A Software Framework for Matchmaking Based on
Semantic Web Technology. In Proceedings International WWW Conference, Bu-
dapest, Hungary. (2003)

10. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic Matching of Web Services Capabilities. The First International Semantic
Web Conference (ISWC), Sardinia (Italy), June, 2002.

11. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2002.

12. Volker Haarsley and Ralf Moller. RACER User’s Guide and Reference Manual
Version 1.7.7


